Dominant role of oncogene dosage and absence of tumor suppressor activity in Nras-driven hematopoietic transformation.
نویسندگان
چکیده
UNLABELLED Biochemical properties of Ras oncoproteins and their transforming ability strongly support a dominant mechanism of action in tumorigenesis. However, genetic studies unexpectedly suggested that wild-type (WT) Ras exerts tumor suppressor activity. Expressing oncogenic Nras(G12D) in the hematopoietic compartment of mice induces an aggressive myeloproliferative neoplasm that is exacerbated in homozygous mutant animals. Here, we show that increased Nras(G12D) gene dosage, but not inactivation of WT Nras, underlies the aggressive in vivo behavior of Nras(G12D/G12D) hematopoietic cells. Modulating Nras(G12D) dosage had discrete effects on myeloid progenitor growth, signal transduction, and sensitivity to MAP-ERK kinase (MEK) inhibition. Furthermore, enforced WT N-Ras expression neither suppressed the growth of Nras-mutant cells nor inhibited myeloid transformation by exogenous Nras(G12D). Importantly, NRAS expression increased in human cancer cell lines with NRAS mutations. These data have therapeutic implications and support reconsidering the proposed tumor suppressor activity of WT Ras in other cancers. SIGNIFICANCE Understanding the mechanisms of Ras -induced transformation and adaptive cellular responses is fundamental. The observation that oncogenic Nras lacks tumor suppressor activity, whereas increased dosage strongly modulates cell growth and alters sensitivity to MEK inhibition, suggests new therapeutic opportunities in cancer.
منابع مشابه
MEK1 is required for the development of NRAS-driven leukemia
The dual-specificity kinases MEK1 and MEK2 act downstream of RAS/RAF to induce ERK activation, which is generally considered protumorigenic. Activating MEK mutations have not been discovered in leukemia, in which pathway activation is caused by mutations in upstream components such as RAS or Flt3. The anti-leukemic potential of MEK inhibitors is being tested in clinical trials; however, downreg...
متن کاملMicroRNA-29a Functions as a Tumor Suppressor and Increases Cisplatin Sensitivity by Targeting NRAS in Lung Cancer
MicroRNAs have been reported to play an important role in diverse biological processes and progression of various cancers. MicroRNA-29a has been observed to be downregulated in human lung cancer tissues, but the function of microRNA-29a in lung cancer has not been well investigated. In this study, we demonstrated that the expression levels of microRNA-29a were significantly downregulated in 38 ...
متن کاملSTUDY OF HMGA2 GENE INHIBITION WITH SPECIFIC SHRNA AND SIRNA AND INVESTIGATION OF CORRESPONDING EFFECTS ON DOWNSTREAM GENE EXPRESSION IN MDA-MB-231 CANCER CELLS: A BIOINFORMATIC AND EXPERIMENTAL STUDY
Background & Aims: The use of siRNA to silence gene expression is increasingly expanding today. The aim of this study is to bioinformatically and experimentally investigate the inhibition of the HMGA2 gene and its corresponding effects on downstream genes expression rate in MDA-MB-231 cancer cell treated by shRNA and siRNA specific to HMGA2. Materials & Methods: To perform this bioinformatic a...
متن کاملThe Role of miRNA Dysregulation in Thyroid Cancer Development by Targeting the Main Signaling Pathways
Thyroid cancer is one of the most common malignancies of endocrine glands, causing carcinomas, such as papillary, follicular, medullary, and anaplastic thyroid carcinomas. Due to the significance of thyroid carcinomas, identification of the main signaling pathways and the affecting mutations has been considered by researchers. Further studies on the dysregulation of oncogenes in signaling path...
متن کاملThe Deficiency of Tumor Suppressor Prep1 Accelerates the Onset of Meis1- Hoxa9 Leukemogenesis
Prep1 and Meis1 ortholog TALE transcription factors have opposing roles in tumorigenesis: Meis1 serves as an oncogene, Prep1 as a tumor suppressor. We now report that, Meis1 overexpression in primary Prep1-deficient (Prep1i/i) embryonic hematopoietic cells increases self-renewal potential of cells in vitro but not in vivo, whereas leukemia is instead obtained when Meis1 is combined with another...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cancer discovery
دوره 3 9 شماره
صفحات -
تاریخ انتشار 2013